Again using gtsummary it is easy to create tables of multiple univariate analyses at the same time. In this case we look at predictors of survival on the Titanic without adjusting for the impact of other variables on that outcome (e.g., the impact of sex on survival without considering age or class etc.)

Code
library(titanic)
library(tidyverse)
library(gtsummary)

theme_gtsummary_compact()

titanic_train %>% # Dataset used
  select(-c(Name, PassengerId, Ticket, Cabin, Embarked, Parch)) %>% # Keeping only the variables we want
  mutate( # Making death 1 and survival 0, easier to interpret in graph
    Survived = as.numeric(Survived!= '1'),
    Pclass = factor(Pclass) # Class should be categorical
  ) %>%
  tbl_uvregression(method=glm,
                   y = Survived,
    method.args = list(family = binomial),
    exponentiate = TRUE,
    hide_n = T
  ) %>%
  add_nevent(location="level") %>%
  add_global_p() %>%    #omnibus test
  bold_p() %>% # bold p-values  (default 0.05)
  bold_labels() %>% 
  italicize_levels() %>% 
  modify_header(stat_nevent = "**Deaths**")
Characteristic Deaths OR1 95% CI1 p-value
Pclass <0.001
    1 80
    2 97 1.90 1.27, 2.83
    3 372 5.31 3.78, 7.53
Sex <0.001
    female 81
    male 468 12.4 8.94, 17.2
Age 424 1.01 1.00, 1.02 0.038
SibSp 549 1.07 0.95, 1.22 0.3
Fare 549 0.98 0.98, 0.99 <0.001
1 OR = Odds Ratio, CI = Confidence Interval